• WIG
  • WIG20
  • WIG30
  • mWIG40
  • WIG50
  • WIG250
Wykres indexu
WALUTY
WSKAŹNIKI MAKRO
SymbolWartość
Inflacja CPI2.1%
Bezrobocie6.5%
PKB4.9%
Stopa ref.1.5%
WIBOR3M1.72%
logo sponsora
GIEŁDY - ŚWIAT
INDEKSY - POLSKA
TOWARY

Twierdzenie de Moivre'a-Laplace'a

Twierdzenie de Moivre'a-Laplace'a zaliczane jest do tzw. twierdzeń granicznych rachunku prawdopodobieństwa. A zatem opisuje nam ono rozkład sumy niezależnych zmiennych losowych, których liczba zmierza do nieskończoności. Inaczej rzecz ujmując, przybliża nam zachowanie się tejże sumy.

Przejdźmy do rzeczy. Twierdzenie de Moivre'a-Laplace'a odnosi się do sytuacji, w której wykonujemy n niezależnych doświadczeń losowych. Na przykład sprawdzamy wyroby wyprodukowane w fabryce (pod kątem ich sprawności). W każdym doświadczeniu z tym samym prawdopodobieństwem może wystąpić zdarzenie A, np. uszkodzenie (wadliwość) wyrobu. Wówczas zachodzi następująca równość:

Wzór zdaje się być dość skomplikowany i pewnie taki jest, ale w rachunku prawdopodobieństwa i statystyce nigdy od tego całkowicie nie uciekniemy. W każdym razie byłoby to trudne na etapie szkoły wyższej. Trzeba się z tym pogodzić, a czytelnikom źle trawiącym rozbudowane formuły matematyczne możemy tylko powiedzieć na pocieszenie, iż pomijamy dowód twierdzenia.

Oznaczenia są takie: m to ilość wystąpień zdarzenia A, n to liczba doświadczeń, zaś:

to tzw. funkcja Laplace'a. Jest ona wyrażona przy pomocy całki. Nie musimy jej obliczać ręcznie: jej wartości, przynajmniej te, których się zwykle używa, są ujęte w tablicach, które można znaleźć w książkach z obszaru statystyki i probabilistyki (por. bibliografia).

Pokażemy na przykładzie, jak ten mechanizm działa. Odwołajmy się do podanego wcześniej obrazu fabryki i sprawdzania jakości produktów. Załóżmy, że wiemy skądinąd, iż prawdopodobieństwo zepsucia się urządzenia w czasie sprawdzania jego niezawodności wynosi p = 0,05 (tj. 5 proc.). Zapytajmy teraz, jakie jest prawdopodobieństwo tego, że przy testowaniu 100 urządzeń zepsuje się ich mniej niż 5?

Twierdzenie Moivre'a-Laplace'a mówi nam, że jeśli zdarzenie zachodzi nie więcej niż m2 razy, ale nie mniej niż m1 razy, to zachodzi zależność:

Oczywiście q = 1 - p. A zatem u nas m1 = 5, m2 = 100, n = 100, p = 0,05, q = 0,95. Stąd:

Tak więc szansa, iż w 100 wyrobach co najmniej 5 zostanie uszkodzonych, to 50 proc.

A jeśli interesuje nas sytuacja, w której takich przypadków będzie więcej niż 5, wszelako mniej niż 100? Voila:

Tym razem wartość jest nieco niższa, mamy blisko 49 proc.

Podamy jeszcze twierdzenie Lapunowa, bardziej skomplikowane - przynajmniej w zapisie. Załóżmy mianowicie, że mamy ciąg zmiennych losowych X1, X2, ..., Xn. Niech ciąg ten dla każdego τ > 0 spełnia tzw. warunek Lindeberga:

Wtenczas twierdzenie Lapunowa mówi, iż zachodzi następująca równość graniczna:

Oznaczenia są takie: Fk(x) to dystrybuanta zmiennej losowej Xk, ak = E(X_k) to wartość oczekiwana zmiennej Xk, bk2= D2(Xk) to wariancja zmiennej Xk, zaś Bn2 to suma wyrazów bk2 liczona od 1 do n.


Adam Witczak

 

BIBLIOGRAFIA:

"Problemy rachunku prawdopodobieństwa", praca zbiorowa, PWN 1966.

J. Jakubowski, R. Sztencel, "Rachunek prawdopodobieństwa dla (prawie) każdego", SCRIPT 2006.

R. Magiera, "Modele i metody statystyki matematycznej", Oficyna Wydawnicza GiS 2005

Kalendarium 24-04-2018.

  • IFIRMA

    ZWZA ws. m.in. podziału zysku za rok obrotowy 2017 oraz wypłaty dywidendy z wypracowanych zysków za lata 2011-2017.

  • DECORA

    ZWZA ws. m.in. przeznaczenia zysku za rok obrotowy 2017.

  • EMPERIA

    Po zakończeniu sesji spółka opuści skład indeksów mWIG40 i WIG.

  • MONNARI

    Publikacja skonsolidowanego oraz jednostkowego raportu za 2017 rok.

  • MILLENNIUM

    Publikacja skonsolidowanego raportu za I kwartał 2018 roku.

  • INGBSK

    Pierwszy dzień notowań bez dywidendy 3,20 zł na akcję.

  • IMMOBILE

    Publikacja skonsolidowanego oraz jednostkowego raportu za 2017 rok.

  • ASSECOSEE

    ZWZA ws. m.in. podziału zysku i wypłaty dywidendy.

  • IMPEXMET

    Publikacja jednostkowego oraz skonsolidowanego raportu za 2017 rok.

  • KRUK

    Pierwszy dzień notowań bez dywidendy 5 zł na akcję.

  • BZWBK

    Publikacja skonsolidowanego raportu za I kwartał 2018 roku.

Więcej wydarzeń
  • Popularne
  • Ostatnio dodane

Kontakt z redakcją

 

tel. +48 22 507 88 99

Fax. +48 22 898 16 02

Nasze Portale

         
 

 

   Multum Ofert znanywet.pl
  • Wzrosty
  • Debiuty
  • Spadki
  • Obroty
Walor Cena Zmiana



 

 

 

 

 

 

 

Walor Cena Zmiana



Walor Cena Zmiana Obroty (*)
(*) wartości w tys. zł.


Ostatnie artykuły

Popularne artykuły

Nasza witryna używa plików cookies

Używamy informacji zapisanych za pomocą cookies w celu dostosowania naszych serwisów do indywidualnych potrzeb użytkowników.

Zobacz naszą politykę prywatności

Zobacz dyrektywę parlamentu europejskiego

Zezwoliłeś na zapisywanie plików cookies na tym komputerze